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Atomic Compton profiles within different exchange-only theories
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Abstract. The impulse Compton Profiles (CPs) J(q) and the 〈pn〉 expectation values for some inert gas
atoms (He-Kr) are computed and compared within the Harbola-Sahni (HS), Hartree-Fock (HF) theories
and a Self-Interaction-Corrected (SIC) density functional model. The Compton profiles for excited states
of helium atom are also calculated. While the calculated CPs are found to generally agree, they differ
slightly from one another for small values of the Compton parameter q and are in good agreement for large
q values. The 〈pn〉 expectation values within the three theories are also found to be comparable. The HS
formalism is seen to mimic HF reasonably well in the momentum space, establishing the logical consistency
of the former.

PACS. 31.25.-v Electron correlation calculations for atoms and molecules – 31.90.+s Other topics in the
theory of the electronic structure of atoms, molecules, and their ions

In the phenomenon of Compton scattering, the Comp-
ton cross-section (of high-energy X-ray or γ-ray photon
inelastically scattered by electrons in matter) has a di-
rect bearing on the electron-momentum density. In the
so-termed impulse approximation [1] the Compton cross-
section is proportional to an experimentally observable
quantity, viz. the Compton profile (CP), related to the
electron momentum density, vide

J(q) =
∫ ∞

−∞

∫ ∞

−∞
γ(px, py, q)dpxdpy. (1)

The momentum density γ(p) is the diagonal (i.e. p′ = p)
part of the full, reduced first-order momentum space
density matrix Γ

(1)
mom(p|p′) connected, in turn, to

the many-electron momentum-space wave function [2]
Φ(p1,p2, . . . ,pN ) by

Γ (1)
mom(p|p′) =

N

∫
Φ∗(p,p2, . . . ,pN )

×Φ(p′,p2, . . . ,pN )d3p2 . . . d3pN , (2)

where a sum over spin may also be included.
Within the independent-electron approximation such

as the Hartree-Fock (HF) theory, Γ
(1)
mom(p|p′) takes the

form [3]
Γ (1)
mom(p|p′) =

∑
i

fiφ
∗
i (p)φi(p′),
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with i sweeping through the “occupied” states with the
occupancies fi and φi(p), the momentum-space orbital,
being the Fourier transform of the coordinate-space or-
bital ψi(r) related through (Hartree atomic units, em-
ployed throughout)

φi(p) =
1

(2π)3/2

∫
eip·rψi(r)d3r. (3)

The 〈pn〉-moments are defined in terms of electron mo-
mentum density (EMD) distribution by

〈pn〉 = 4π
∫ ∞

0

pn+2 γ(p)dp,

−2 ≤ n ≤ 4, (4)

where γ(p) = 1
4π

∫
γ(p)dΩp̂ is the spherically averaged

EMD, in turn leading to the spherically averaged impulse
Compton profile J(q) = 2π

∫ ∞
|q| γ(p) p dp. These 〈pn〉 ex-

pectation values sample the interior as well as exterior
regions of the EMD and are also related to atomic prop-
erties. The 〈1/p〉 moment is twice the peak value of the
impulse profile J(0); the 〈p2〉 moment is twice the kinetic
energy (= −Etotal, by the virial theorem) while the 〈p〉
moment is empirically found to be almost proportional to
the exact Hartree-Fock exchange energy [4].

The recent Harbola-Sahni approach [5,6] to the
atomic structure calculations proffers an attractive al-
ternative to the conventional Hartree-Fock description.
The HS approach has been proven to be successful in
giving the total energies [7,8] and co-ordinate space
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properties [9,10] practically of Hartree-Fock quality. In ad-
dition, coupled with local correlation, it also describes the
excited states of atoms quite accurately [11]. This success
of the HS formalism prompts one for its critical appraisal
in the momentum space through Compton profiles and
the 〈pn〉 expectation values. We also compare these with
the corresponding quantities calculated within the HF, the
HS and the self-interaction-corrected (SIC) local density
functional theories. This study is aimed at bringing out
how these p-space quantities calculated using the local
and orbital-independent prescription of HS compare with
those of the HF theory, which employs a nonlocal poten-
tial (in its exact exchange description), and of SIC theory
in which the effective potential, although local, turns out
to be orbital-dependent. In the following we first briefly
describe the HF, HS and SIC theories to highlight the
differences among them.

All the three theories HF, HS and SIC are indepen-
dent particle theories in which the electron orbitals are
obtained by solving the equations (Hartree atomic units,
i.e. � = |e| = m = 1 are used throughout herein), viz.

[
−∇2

2
+ vH(r) + vx(r)

]
ψi = εiψi;

i = 1, 2, . . . N, (5)

where vH(r) = vnuclear(r) +
∫ ρ(r′)

|r−r′|d
3r′ is the Hartree

potential and vx the exchange potential. Here ρ(r) is
the electronic density given in terms of orbitals ψi(r) as
ρ(r) =

∑
i fi|ψi(r)|2. The differences in HF, HS and SIC

precisely lie in the manner in which the exchange potential
is prescribed in them. In HF, which is the exact theory at
the “exchange-only” level, as noted above, the potential
vx is nonlocal with its action on ψi(r) given by

vx(r)ψi(r) =∑
j

spin i=spin j

∫
ψ∗

j (r
′)ψj(r)ψi(r′)
|r − r′| d3r′. (6)

On the other hand, the exchange potential in the
exchange-only HS theory is local and is prescribed as the
work done in moving an electron in the field of its Fermi
hole [5]:

vx(r) = Wx(r) = −
∫ r

∞
Ex · dl, (7)

where

Ex(r) =
∫

ρx(r, r′)
| r − r′|3 (r − r′) d3r′ (8)

is the exchange “electric field” due to the Fermi hole (or
the “exchange hole”) ρx(r, r′).

In the SIC theory the exchange potential is calculated
within the local-density approximation (LDA) which is

Table 1. Spherically averaged Compton profile, Jsph(q) for he-
lium within the three “exchange-only” theories compared with
their experimental counterpart. (Hartree a.u. used through-
out.)

q HF HS SIC Experiment a

0.0 1.070 1.070 1.070 1.071±1.5%
0.2 1.017 1.017 1.017 1.019
0.6 0.700 0.700 0.700 0.705
1.0 0.382 0.382 0.382 0.388
1.5 0.160 0.160 0.160 –
2.0 0.068 0.068 0.068 0.069
2.5 0.031 0.031 0.031 0.030±15%
3.0 0.015 0.015 0.015 0.013

a Reference [18].

Table 2. Jsph(q) for neon.

q HF HS SIC CIa Experimentb

0.0 2.727 2.719 2.751 2.739 2.762
0.2 2.696 2.687 2.717 2.707 2.738
0.4 2.593 2.585 2.608 2.602 2.630
0.6 2.413 2.406 2.418 2.4159 2.427
0.8 2.168 2.162 2.163 2.1645 2.162
1.0 1.889 1.885 1.875 1.880 1.859
1.5 1.228 1.228 1.211 – –
2.0 0.771 0.774 0.764 0.768 0.765
2.5 0.501 0.506 0.501 – 0.501
3.0 0.346 0.350 0.349 0.348 0.359
3.5 0.253 0.256 0.256 – 0.277
4.0 0.194 0.196 0.197 0.196 0.210
5.0 0.125 0.125 0.126 0.126 0.126

a Reference [20].
b Reference [19].

then ad hoc corrected for its self-interaction on an orbital-
by-orbital basis [12]. Thus the orbital-dependent SIC ex-
change potential is given as

vi
SIC,x(r) =

(−3
4

)(
3
π

)1/3

ρ1/3(r)

−
{∫ | ψi(r′) |2

| r − r′ | d3r′ +
(−3

4

)(
6ρi(r)

π

)1/3
}

, (9)

where ρi(r) =| ψi(r) |2 is the orbital density.
In the context of HS potential, it may be noted

that as recently established by Holas and March [13],
the Harbola-Sahni exchange-correlation potential can also
be calculated from the exact second-order density ma-
trix by employing the differential virial theorem. The
results are consistent with, and provide the mathemat-
ical proof of the formalism proposed by HS. In addi-
tion, it also spells out how the kinetic-energy term miss-
ing [5,6] from the HS potential arises from the differ-
ences in the exact kinetic-energy density tensor and its
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Table 3. Jsph(q) for argon.

q HF HS SIC Experimenta

0.0 5.064 5.040 5.093 5.058
0.2 4.963 4.941 4.991 4.917
0.4 4.619 4.605 4.638 4.526
0.6 4.035 4.029 4.033 3.960
0.8 3.333 3.331 3.312 3.319
1.0 2.661 2.664 2.636 2.697±1%
1.5 1.546 1.557 1.540 –
2.0 1.084 1.090 1.086 1.129
2.5 0.874 0.876 0.875 0.904
3.0 0.736 0.736 0.737 0.744
3.5 0.622 0.621 0.620 0.634
4.0 0.520 0.519 0.520 0.534±2.5%
4.5 0.433 0.432 0.432 –
5.0 0.359 0.359 0.359 0.366
10.0 0.075 0.076 0.076 0.078±10%
15.0 0.025 0.025 0.025 0.025

a Reference [18].

Table 4. Jsph(q) for krypton.

q HF HS SIC Experimenta

0.0 7.237 7.195 7.262 7.188
0.2 7.095 7.060 7.122 6.988
0.4 6.605 6.586 6.625 6.453
0.6 5.785 5.781 5.783 5.702
0.8 4.855 4.863 4.841 4.883
1.0 4.044 4.059 4.032 4.131±1.7%
2.0 2.442 2.447 2.448 2.557
3.0 1.858 1.857 1.854 –
4.0 1.327 1.324 1.319 1.350
5.0 0.935 0.935 0.931 0.933±3.5%
10.0 0.260 0.260 0.261 0.254
15.0 0.105 0.105 0.105 0.099

a Reference [18].

Slater-Kohn-Sham orbitals counterpart [13]. Similar anal-
ysis carried out within the Hartree-Fock theory [14] re-
veals that the difference between the exact KS exchange-
only potential and the HS potential is traced back to
the differences in the kinetic-energy density tensors of the
HF theory and its local counterpart (as such, this differ-
ence is indeed only marginal) [14]. Further, within a local
prescription, it is not clear as to how one incorporates
the kinetic-energy effects directly in a self-consistent-field
(SCF) scheme.

In this work the spherically averaged Compton pro-
files J(q) within the HF theory are computed using the
near Hartree-Fock (NHF) quality wave functions that em-
ploy the STO (Slater-Type-Orbital) bases tabulated by
Clementi and Roetti [15] and the values of the 〈pn〉 mo-
ments are from ref. [16]. On the other hand, the orbitals
with effective potential Wx are obtained by a modified
Herman-Skillman code [17]. The calculated Compton pro-

Table 5. 〈pn〉 moments for helium within different “exchange-
only” theories.

Moments HF HS SIC

〈p−2〉 4.0893 · 100 4.0760 · 100 4.0902 · 100

〈p−1〉 2.1406 · 100 2.1409 · 100 2.1410 · 100

〈p〉 2.7990 · 100 2.7990 · 100 2.7987 · 100

〈p2〉 5.7234 · 100 5.7234 · 100 5.7138 · 100

〈p3〉 1.7991 · 101 1.7990 · 101 1.7628 · 101

〈p4〉 1.0567 · 102 1.0549 · 102 8.7395 · 102

Table 6. 〈pn〉 moments for neon.

Moments HF HS SIC

〈p−2〉 5.4795 · 100 5.4526 · 100 5.6349 · 100

〈p−1〉 5.4558 · 100 5.4387 · 100 5.5025 · 100

〈p〉 3.5196 · 101 3.5269 · 101 3.5246 · 101

〈p2〉 2.5709 · 102 2.5708 · 102 2.5771 · 102

〈p3〉 3.5843 · 103 3.5720 · 103 3.5836 · 103

〈p4〉 9.8510 · 104 9.9418 · 104 9.9898 · 104

Table 7. 〈pn〉 moments for argon.

Moments HF HS SIC

〈p−2〉 1.3107 · 101 1.2943 · 101 1.3253 · 101

〈p−1〉 1.0128 · 101 1.0076 · 101 1.0187 · 101

〈p〉 8.8699 · 101 8.8796 · 101 8.8793 · 101

〈p2〉 1.0536 · 103 1.0536 · 103 1.0538 · 103

〈p3〉 2.4301 · 104 2.4307 · 104 2.3997 · 104

〈p4〉 1.1393 · 106 1.1723 · 106 5.4391 · 106

files along with their available experimental [18,19] and
accurate theoretical counterparts [20] are tabulated in Ta-
bles 1-4 for inert atomic systems He-Kr while the mo-
ments are displayed in Tables 5-8. The helium atom in its
ground state has a single orbital, hence all the CPs within
these three exchange-only theories practically coincide (cf.
Tab. 1). For Ne, Ar and Kr, it is evident from Tables 2-5
that for low q-values the CPs differ from each other ap-
preciably. For higher q-values these theoretical (HF, HS,
SIC) profiles are in better agreement with one another. In
the low-q region (q < 0.5 au), the SIC profiles are seen
to be the largest and the HS profiles are the smallest in
magnitude among the three theories. Beyond q ∼ 0.5 a.u.
the three profiles cross each other and are in good agree-
ment in the asymptotic region. It is observed further that
the “experimental” J(q) is fairly well estimated by the
“exchange-only” theories. It is to be noted that an ac-
curate theoretical J(q) computation beyond HF, viz. the
configuration interaction calculation for Ne, due to Tri-
pathi et al. [20] while improving upon the HF-CP still
slightly underestimates the experimental J(0) but overes-
timates the intermediate profile. The higher values of J(q)
in the SIC theory indicate that the momentum density is
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Table 8. 〈pn〉 moments for krypton.

Moments HF HS SIC

〈p−2〉 1.7478 · 101 1.7084 · 101 1.7517 · 101

〈p−1〉 1.4474 · 101 1.4390 · 101 1.4524 · 101

〈p〉 2.8141 · 102 2.8161 · 102 2.8155 · 102

〈p2〉 5.5041 · 103 5.5013 · 103 5.5072 · 103

〈p3〉 2.2628 · 105 2.2424 · 105 2.2453 · 105

〈p4〉 1.9852 · 108 5.0212 · 107 5.0297 · 107

Table 9. Jsph(q) for different states of helium atom within the
Harbola-Sahni approach.

q 1s2 1s2s 1s2p 1s3p 1s4p

0.0 1.070 2.516 1.583 2.966 4.433
0.2 1.017 1.532 1.467 1.266 0.955
0.4 0.879 0.592 0.949 0.517 0.423
0.6 0.700 0.362 0.537 0.412 0.357
0.8 0.527 0.294 0.340 0.303 0.287
1.0 0.382 0.237 0.239 0.228 0.223
1.5 0.160 0.119 0.111 0.112 0.111
2.0 0.068 0.056 0.052 0.053 0.053
2.5 0.031 0.029 0.025 0.025 0.025
3.0 0.015 0.013 0.012 0.012 0.012

localized near the origin p = 0 in the SIC formalism. This
can also be seen from the 〈p−2〉 and 〈p−1〉 values which,
as pointed out above, sample the interior region of the
EMD. The higher the momentum density near the ori-
gin the greater the values of these moments. That these
moments have largest values in the SIC formalism may
be qualitatively explained as follows: The region near the
origin in the momentum space by Fourier reciprocity cor-
responds to the asymptotic region in the position space.
In the density functional theory (DFT) the asymptotic
decay of the co-ordinate space electron density goes as
∼ exp(−2

√
2|εmax| r), where εmax is the eigenvalue of the

highest occupied orbital [21]. The highest occupied orbital
energy eigenvalues for these systems in the SIC formalism
are smaller in magnitude compared to their HF and HS
counterparts. Consequently, the coordinate-space electron
density decays more slowly in SIC than in the HS and HF
theories, leading therefore to higher values of 〈p−2〉 and
〈p−1〉 moments. The larger values of the HF profiles than
HS profiles near q = 0 can also be explained similarly. In
the HF theory (unlike in DFT), all the orbitals decay with
the same exponent (∼ exp(−√

2|εmax
HF | r)) asymptotically

(εmax
HF here is the highest occupied HF orbital energy eigen-

value) [22] which, by reciprocity, reflects in the slower de-
cay of γ(p) in the small |p|, resulting therefore in slightly
larger values of 〈1/p2〉, 〈1/p〉 moments and JHF(q) (near
q = 0) as compared to their HS counterparts. Amongst
the various moments, the agreement among these theo-
ries is the best for the 〈p2〉 moments. The HF and HS
values of this moment are very close, agreeing up to four

significant figures in case of Ne and Ar, and up to three
significant figures for Kr. This agreement is however not
surprising since this moment is essentially the double of
the negative of the total energy (by the virial theorem)
and the HS theory is known to produce the total ener-
gies which are practically equivalent to their HF counter-
parts. Further, the 〈p〉 and 〈p3〉 moments are also found
to be comparable in the three theories. The 〈p4〉 moments
within HS agree with their corresponding HF and/or SIC
values. Thus, the HS theory with its local prescription for
the exchange potential is seen to mimic the Hartree-Fock
formalism reasonably well in the momentum space. Our
study on the detailed structure of the radially projected
first-order reduced density matrix [3] also supports this
similarity between the HS and HF density matrices: strik-
ing similarities are observed in the structure (contours)
of reduced first-order density matrix in the momentum
space.

The HS theory also offers a simpler description of the
bound excited states in comparison with the HF descrip-
tion. This is because the HS formalism is not based on the
variational principle, but rather on the physical effect of
the Pauli and Coulomb correlations; which has prompted
us to compute the CPs for the excited states of helium. Of
course, the numerical HF approach is also perfectly suit-
able for excited states with the orbitals identified from
the number of radial nodes (= n − l − 1) of a given ra-
dial part Rnl(r) of the orbital. However, the appeal of the
HS approach is that it is much simpler to implement than
the numerical HF scheme, yielding results that are prac-
tically equivalent to the latter. The CPs calculated for
various excited states of helium are presented in Table 9.
The excited states of helium atom will have diffused elec-
tron distribution in the position space and also will have
higher total energy. Consequently, the excited-state CPs
will be more compact or localized in the small-q region, as
is evident from Table 9.

One naively expects that the HS Compton profiles may
be improved by adding an accurate local correlation to
its effective potential. It is observed, however, that addi-
tion of an ad hoc correlation (such as the Gunnarsson-
Lundqvist [23] or Ceperly-Alder [12] prescriptions) to the
effective HS potential results in an undesirable lowering
of the peak profile. If the correlation is added right at
the level of the exchange-correlation hole (ρx replaced
by ρxc in equation (8)) and then the HS computations
are performed self-consistently, an improvement over the
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“exchange-only” J(q) is expected. On the other hand,
though the work of Holas and March [13], as pointed
above, prescribes an inclusion of the kinetic piece of cor-
relation in the KS context, it is not known how one actu-
ally implements their scheme in practice. These studies,
of course, go beyond the scope of the present “exchange-
only” theme.

In this paper, we have carried out a comparative
study of the momentum space properties of atoms viz.
Compton profiles and various expectation values calcu-
lated within the “work formalism” of Harbola and Sahni,
the Hartree-Fock theory as well as the Self-Interaction-
Corrected local-density approximation theory. The Comp-
ton profiles for various excited states of the helium atoms
are also presented within the work formalism. The present
work demonstrates that the Harbola-Sahni work formal-
ism which in position space closely follows the HF theory
is also seen to do so in the momentum space, bringing out
the logical consistency of the HS theory.
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